`
zhanbo2398244
  • 浏览: 6516 次
文章分类
社区版块
存档分类
最新评论

OSS--跨平台的音频接口简介

 
阅读更多

具体:http://www.verydemo.com/demo_c170_i12258.html

OSS--跨平台的音频接口简介

 
 
 
 
   

 

     

 
   

 


 

2003 年 3 月 03 日

OSS(Open Sound System)是 unix 平台上一个统一的音频接口, 即只要音频处理应用程序按照OSS的API来编写,那么在移植到另外一个平台时,只需要重新编译即可。

....................................................................

同时,很多的Unix工作站中,只能提供录音与放音的功能。有了OSS后,给这些工作站带来了MIDI功能,加上音频流、语音识别/生 成、计算机电话(CT)、JAVA以及其它的多媒体技术,在Unix工作站中,同样可以享受到同Windows、Macintosh环境一样的音频世界。 另外,OSS还提供了与视频和动画播放同步的音频能力,这对在Unix中实现动画、游戏提供了帮助。

本文首先解释在音频编程时经常遇到的名词、设备文件的含义,然后分别在录音、播放、Mixer方面对OSS接口的使用方法进行介绍。由于OSS API十分丰富,因此在本文中只介绍那些最为常用的接口。对于OSS API的一个完整描述,可以参考[1]。

 

数字音频设备(有时也称codec,PCM,DSP,ADC/DAC设备):播放或录制数字化的声音。它的指标主要有:采样速率(电话为8K,DVD为96K)、channel数目(单声道,立体声)、采样分辨率(8-bit,16-bit)。

mixer(混频器):用来控制多个输入、输出的音量,也控制输入(microphone,line-in,CD)之间的切换。

synthesizer(合成器):通过一些预先定义好的波形来合成声音,有时用在游戏中声音效果的产生。

MIDI 接口:MIDI接口是为了连接舞台上的synthesizer、键盘、道具、灯光控制器的一种串行接口。

在Unix系统中,所有的设备都被统一成文件,通过对文件的访问方式(首先open,然后read/write,同时可以使用ioctl读取/设置参数,最后close)来访问设备。在OSS中,主要有以下的几种设备文件:

这些设备文件的设备编号见[1]。

 

  回页首


 

OSS为音频编程提供三种设备,分别是/dev/dsp,/dev/dspW和/dev/audio,前面已经提到了它们之间的区别。

用户可以直接使用Unix的命令来放音和录音,命令cat /dev/dsp >xyz可用来录音,录音的结果放在xyz文件中;命令cat xyz >/dev/dsp播放声音文件xyz。

如果通过编程的方式来使用这些设备,那么Unix平台通过文件系统提供了统一的访问接口。程序员可以通过文件的操作函数直接控制这些设备, 这些操作函数包括:open、close、read、write、ioctl等。下面我们就分别讨论打开音频设备、放音、录音和参数调整。


1) 头文件定义


/*
* Standard includes
*/
#include <ioctl.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/soundcard.h>
/*
* Mandatory variables.
*/
#define BUF_SIZE 4096
int audio_fd;
unsigned char audio_buffer[BUF_SIZE];


2) 打开设备

if ((audio_fd = open(DEVICE_NAME, open_mode, 0)) == -1) {
/* Open of device failed */
perror(DEVICE_NAME);
exit(1);
}

open_mode有三种选择:O_RDONLY,O_WRONLY和O_RDWR,分别表示只读、只写和读写。OSS建议尽量使用只读或只写,只有在全双工的情况下(即录音和放音同时)才使用读写模式。

 


int len;
if ((len = read(audio_fd, audio_buffer, count)) == -1) {
perror("audio read");
exit(1);
}

count为录音数据的字节个数(建议为2的指数),但不能超过audio_buffer的大小。从读字节的个数可以精确的测量时间,例如8kHZ 16-bit stereo的速率为8000*2*2=32000bytes/second,这是知道何时停止录音的唯一方法。

 

放音实际上和录音很类似,只不过把read改成write即可,相应的audio_buffer中为音频数据,count为数据的长度。

注意,用户始终要读/写一个完整的采样。例如一个16-bit的立体声模式下,每个采样有4个字节,所以应用程序每次必须读/写4的倍数个字节。

另外,由于OSS是一个跨平台的音频接口,所以用户在编程的时候,要考虑到可移植性的问题,其中一个重要的方面是读/写时的字节顺序。

 

  • 设置采样格式
    
    int format;
    format = AFMT_S16_LE;
    if (ioctl(audio_fd, SNDCTL_DSP_SETFMT, &format) == -1) {
    /* fatal error */
    perror("SNDCTL_DSP_SETFMT");
    exit(1);
    }
    if (format != AFMT_S16_LE) {
    /* 本设备不支持选择的采样格式. */
    }
    在设置采样格式之前,可以先测试设备能够支持那些采样格式,方法如下:
    int mask;
    if (ioctl(audio_fd, SNDCTL_DSP_GETFMTS, &mask) == -1) {
    /* Handle fatal error ... */
    }
    if (mask & AFMT_MPEG) {
    /* 本设备支持MPEG采样格式 ... */}
    
    

  • 设置通道数目
    
    int channels = 2; /* 1=mono, 2=stereo */
    if (ioctl(audio_fd, SNDCTL_DSP_CHANNELS, &channels) == -1) {
    /* Fatal error */
    perror("SNDCTL_DSP_CHANNELS");
    exit(1);
    }
    if (channels != 2)
    {/* 本设备不支持立体声模式 ... */}
    

  • 设置采样速率
    
    int speed = 11025;
    if (ioctl(audio_fd, SNDCTL_DSP_SPEED, &speed)==-1) {
    /* Fatal error */
    perror("SNDCTL_DSP_SPEED");
    exit(Error code);
    }
    if ( /* 返回的速率(即硬件支持的速率)与需要的速率差别很大... */ ) {
    /* 本设备不支持需要的速率... */
    }
    

音频设备通过分频的方法产生需要的采样时钟,因此不可能产生所有的频率。驱动程序会计算出最接近要求的频率来,用户程序要检查返回的速率值,如果误差较小,可以忽略,但误差不能太大。

 

  回页首


 

对Mixer的控制,包括调节音量(volume)、选择录音音源(microphone,line-in)、查询mixer的功能和状 态,主要是通过Mixer设备/dev/mixer的ioctl接口。相应的,ioctl接口提供的功能也分为三类:调节音量、查询mixer的能力、选 择mixer的录音通道。下面就分别介绍使用的方法:

下面的mixer_fd是对mixer设备执行open操作返回的文件描述符。

  • 调节音量

    应用程序通过ioctl的SOUND_MIXER_READ和SOUND_MIXER_WIRTE功能号来读取/设置音量。在OSS中,音量的大小范围在0-100之间。使用方法如下:

    
    int vol;
    if (ioctl(mixer_fd, SOUND_MIXER_READ(SOUND_MIXER_MIC), &vol) == -1) {
    /* 访问了没有定义的mixer通道... */
    

    SOUND_MIXER_MIC是通道参数,表示读microphone通道的音量,结果放置在vol中。如果通道是立体声,那么vol的最低有效 字节为左声道的音量值,接着的字节为右声道的音量值,另外的两个字节不用。如果通道是单声道,vol中左声道与右声道具有相同的值。

  • 查询mixer的能力

    
    int mask;
    if (ioctl(mixer_fd, SOUND_MIXER_READ_xxxx, &mask) == -1) {
    /* Mixer 的没有此能力... */
    }
    

    SOUND_MIXER_READ_xxxx 中的xxxx代表具体要查询的内容,比如检查可用的mixer通道用SOUND_MIXER_READ_DEVMASK;检查可用的录音设备,用 SOUND_MIXER_READ_RECMASK;检查单声道/立体声,用SOUND_MIXER_READ_STEREODEVS;检查mixer的 一般能力,用SOUND_MIXER_READ_CAPS等等。所有通道的查询的结果都放在mask中,所以要区分出特定通道的状况,使用 mask& (1 << channel_no)。

  • 选择mixer的录音通道

    首先可以通过SOUND_MIXER_READ_RECMASK检查可用的录音通道,然后通过SOUND_MIXER_WRITE_RECSRC选择录音通道。可以随时通过SOUND_MIXER_READ_RECSRC查询当前声卡中已经被选择的录音通道。

    OSS建议把mixer的用户控制功能单独出来形成一个通用的程序。但前提是,在使用mixer之前,首先通过API的查询功能检查声卡的能力。在linux中,就有一个专门的mixer程序--aumix。

分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics